1 #ifndef STAN_MATH_REV_MAT_FUNCTOR_INTEGRATE_ODE_BDF_HPP 2 #define STAN_MATH_REV_MAT_FUNCTOR_INTEGRATE_ODE_BDF_HPP 12 template <
typename F,
typename T_initial,
typename T_param,
typename T_t0,
14 std::vector<std::vector<
17 const std::vector<T_ts>& ts,
18 const std::vector<T_param>& theta,
19 const std::vector<double>& x,
const std::vector<int>& x_int,
20 std::ostream* msgs =
nullptr,
21 double relative_tolerance = 1
e-10,
22 double absolute_tolerance = 1
e-10,
23 long int max_num_steps = 1e8) {
25 return integrator.
integrate(f, y0, t0, ts, theta, x, x_int, msgs,
26 relative_tolerance, absolute_tolerance,
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
double e()
Return the base of the natural logarithm.
std::vector< std::vector< typename stan::return_type< T_initial, T_param, T_t0, T_ts >::type > > integrate_ode_bdf(const F &f, const std::vector< T_initial > &y0, const T_t0 &t0, const std::vector< T_ts > &ts, const std::vector< T_param > &theta, const std::vector< double > &x, const std::vector< int > &x_int, std::ostream *msgs=nullptr, double relative_tolerance=1e-10, double absolute_tolerance=1e-10, long int max_num_steps=1e8)
std::vector< std::vector< typename stan::return_type< T_initial, T_param, T_t0, T_ts >::type > > integrate(const F &f, const std::vector< T_initial > &y0, const T_t0 &t0, const std::vector< T_ts > &ts, const std::vector< T_param > &theta, const std::vector< double > &x, const std::vector< int > &x_int, std::ostream *msgs, double relative_tolerance, double absolute_tolerance, long int max_num_steps)
Return the solutions for the specified system of ordinary differential equations given the specified ...
Integrator interface for CVODES' ODE solvers (Adams & BDF methods).