Stan Math Library
2.20.0
reverse mode automatic differentiation
stan
math
prim
scal
prob
bernoulli_logit_log.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_SCAL_PROB_BERNOULLI_LOGIT_LOG_HPP
2
#define STAN_MATH_PRIM_SCAL_PROB_BERNOULLI_LOGIT_LOG_HPP
3
4
#include <
stan/math/prim/meta.hpp
>
5
#include <
stan/math/prim/scal/prob/bernoulli_logit_lpmf.hpp
>
6
7
namespace
stan
{
8
namespace
math {
9
13
template
<
bool
propto,
typename
T_n,
typename
T_prob>
14
typename
return_type<T_prob>::type
bernoulli_logit_log
(
const
T_n& n,
15
const
T_prob& theta) {
16
return
bernoulli_logit_lpmf<propto, T_n, T_prob>(n, theta);
17
}
18
22
template
<
typename
T_n,
typename
T_prob>
23
inline
typename
return_type<T_prob>::type
bernoulli_logit_log
(
24
const
T_n& n,
const
T_prob& theta) {
25
return
bernoulli_logit_lpmf<T_n, T_prob>(n, theta);
26
}
27
28
}
// namespace math
29
}
// namespace stan
30
#endif
stan
Definition:
log_sum_exp.hpp:8
meta.hpp
stan::math::bernoulli_logit_log
return_type< T_prob >::type bernoulli_logit_log(const T_n &n, const T_prob &theta)
Definition:
bernoulli_logit_log.hpp:14
bernoulli_logit_lpmf.hpp
stan::return_type::type
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
Definition:
return_type.hpp:36
[
Stan Home Page
]
© 2011–2018, Stan Development Team.