1 #ifndef STAN_MATH_PRIM_SCAL_FUN_GRAD_INC_BETA_HPP 2 #define STAN_MATH_PRIM_SCAL_FUN_GRAD_INC_BETA_HPP 27 double C =
exp(a * c1 + b * c2) / a;
31 grad_2F1(dF1, dF2, a + b, 1.0, a + 1, z);
32 g1 =
fma((c1 -
inv(a)), c3, C * (dF1 + dF2));
33 g2 =
fma(c2, c3, C * dF1);
fvar< T > log(const fvar< T > &x)
void grad_2F1(T &g_a1, T &g_b1, const T &a1, const T &a2, const T &b1, const T &z, const T &precision=1e-10, int max_steps=1e5)
Gradients of the hypergeometric function, 2F1.
void grad_inc_beta(fvar< T > &g1, fvar< T > &g2, fvar< T > a, fvar< T > b, fvar< T > z)
Gradient of the incomplete beta function beta(a, b, z) with respect to the first two arguments...
fvar< T > inc_beta(const fvar< T > &a, const fvar< T > &b, const fvar< T > &x)
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
fvar< T > exp(const fvar< T > &x)
fvar< typename stan::return_type< T1, T2, T3 >::type > fma(const fvar< T1 > &x1, const fvar< T2 > &x2, const fvar< T3 > &x3)
The fused multiply-add operation (C99).
fvar< T > log1m(const fvar< T > &x)
fvar< T > inv(const fvar< T > &x)