1 #ifndef STAN_MATH_PRIM_SCAL_PROB_LOGISTIC_LPDF_HPP 2 #define STAN_MATH_PRIM_SCAL_PROB_LOGISTIC_LPDF_HPP 17 template <
bool propto,
typename T_y,
typename T_loc,
typename T_scale>
19 const T_y& y,
const T_loc& mu,
const T_scale& sigma) {
20 static const char*
function =
"logistic_lpdf";
30 T_partials_return logp(0.0);
36 mu,
"Scale parameter", sigma);
52 for (
size_t i = 0; i <
length(sigma); i++) {
53 inv_sigma[i] = 1.0 /
value_of(sigma_vec[i]);
60 exp_mu_div_sigma(
max_size(mu, sigma));
64 for (
size_t n = 0; n <
max_size(mu, sigma); n++)
66 for (
size_t n = 0; n <
max_size(y, sigma); n++)
70 for (
size_t n = 0; n < N; n++) {
71 const T_partials_return y_dbl =
value_of(y_vec[n]);
72 const T_partials_return mu_dbl =
value_of(mu_vec[n]);
74 const T_partials_return y_minus_mu = y_dbl - mu_dbl;
75 const T_partials_return y_minus_mu_div_sigma = y_minus_mu * inv_sigma[n];
76 T_partials_return exp_m_y_minus_mu_div_sigma(0);
78 exp_m_y_minus_mu_div_sigma =
exp(-y_minus_mu_div_sigma);
79 T_partials_return inv_1p_exp_y_minus_mu_div_sigma(0);
81 inv_1p_exp_y_minus_mu_div_sigma = 1 / (1 +
exp(y_minus_mu_div_sigma));
84 logp -= y_minus_mu_div_sigma;
88 logp -= 2.0 *
log1p(exp_m_y_minus_mu_div_sigma);
91 ops_partials.
edge1_.partials_[n]
92 += (2 * inv_1p_exp_y_minus_mu_div_sigma - 1) * inv_sigma[n];
94 ops_partials.
edge2_.partials_[n]
96 - 2 * exp_mu_div_sigma[n]
97 / (exp_mu_div_sigma[n] + exp_y_div_sigma[n]))
100 ops_partials.
edge3_.partials_[n]
101 += ((1 - 2 * inv_1p_exp_y_minus_mu_div_sigma) * y_minus_mu
106 return ops_partials.
build(logp);
109 template <
typename T_y,
typename T_loc,
typename T_scale>
111 const T_y& y,
const T_loc& mu,
const T_scale& sigma) {
112 return logistic_lpdf<false>(y, mu, sigma);
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
boost::math::tools::promote_args< double, typename partials_type< typename scalar_type< T >::type >::type, typename partials_return_type< T_pack... >::type >::type type
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
fvar< T > log(const fvar< T > &x)
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
This template builds partial derivatives with respect to a set of operands.
size_t length(const std::vector< T > &x)
Returns the length of the provided std::vector.
bool size_zero(T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
fvar< T > exp(const fvar< T > &x)
size_t max_size(const T1 &x1, const T2 &x2)
return_type< T_y, T_loc, T_scale >::type logistic_lpdf(const T_y &y, const T_loc &mu, const T_scale &sigma)
T_return_type build(double value)
Build the node to be stored on the autodiff graph.
VectorBuilder allocates type T1 values to be used as intermediate values.
internal::ops_partials_edge< double, Op2 > edge2_
fvar< T > log1p(const fvar< T > &x)
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
internal::ops_partials_edge< double, Op3 > edge3_
internal::ops_partials_edge< double, Op1 > edge1_