1 #ifndef STAN_MATH_PRIM_MAT_PROB_NORMAL_ID_GLM_LOG_HPP 2 #define STAN_MATH_PRIM_MAT_PROB_NORMAL_ID_GLM_LOG_HPP 13 template <
bool propto,
typename T_y,
typename T_x,
typename T_alpha,
14 typename T_beta,
typename T_scale>
17 const T_beta &
beta,
const T_scale &sigma) {
18 return normal_id_glm_lpdf<propto, T_y, T_x, T_alpha, T_beta, T_scale>(
19 y, x, alpha,
beta, sigma);
25 template <
typename T_y,
typename T_x,
typename T_alpha,
typename T_beta,
29 const T_beta &
beta,
const T_scale &sigma) {
30 return normal_id_glm_lpdf<false>(y, x, alpha,
beta, sigma);
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
return_type< T_y, T_x, T_alpha, T_beta, T_scale >::type normal_id_glm_log(const T_y &y, const T_x &x, const T_alpha &alpha, const T_beta &beta, const T_scale &sigma)