1 #ifndef STAN_MATH_FWD_SCAL_FUN_GAMMA_P_HPP 2 #define STAN_MATH_FWD_SCAL_FUN_GAMMA_P_HPP 21 return fvar<T>(u, std::numeric_limits<double>::quiet_NaN());
23 return fvar<T>(u, std::numeric_limits<double>::quiet_NaN());
35 return fvar<T>(u, std::numeric_limits<double>::quiet_NaN());
37 return fvar<T>(u, std::numeric_limits<double>::quiet_NaN());
51 return fvar<T>(u, std::numeric_limits<double>::quiet_NaN());
T d_
The tangent (derivative) of this variable.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
fvar< T > log(const fvar< T > &x)
T val_
The value of this variable.
fvar< T > exp(const fvar< T > &x)
int is_inf(const fvar< T > &x)
Returns 1 if the input's value is infinite and 0 otherwise.
fvar< T > gamma_p(const fvar< T > &x1, const fvar< T > &x2)
This template class represents scalars used in forward-mode automatic differentiation, which consist of values and directional derivatives of the specified template type.
return_type< T1, T2 >::type grad_reg_lower_inc_gamma(const T1 &a, const T2 &z, double precision=1e-10, int max_steps=1e5)
Computes the gradient of the lower regularized incomplete gamma function.