1 #ifndef STAN_MATH_PRIM_SCAL_PROB_WEIBULL_LPDF_HPP 2 #define STAN_MATH_PRIM_SCAL_PROB_WEIBULL_LPDF_HPP 30 template <
bool propto,
typename T_y,
typename T_shape,
typename T_scale>
32 const T_y& y,
const T_shape& alpha,
const T_scale& sigma) {
33 static const char*
function =
"weibull_lpdf";
42 alpha,
"Scale parameter", sigma);
48 T_partials_return logp(0);
52 size_t N =
max_size(y, alpha, sigma);
54 for (
size_t n = 0; n < N; n++) {
55 const T_partials_return y_dbl =
value_of(y_vec[n]);
63 for (
size_t i = 0; i <
length(alpha); i++)
70 for (
size_t i = 0; i <
length(y); i++)
75 T_partials_return, T_scale>
77 for (
size_t i = 0; i <
length(sigma); i++)
82 T_partials_return, T_scale>
84 for (
size_t i = 0; i <
length(sigma); i++)
86 inv_sigma[i] = 1.0 /
value_of(sigma_vec[i]);
89 T_partials_return, T_y, T_shape, T_scale>
90 y_div_sigma_pow_alpha(N);
91 for (
size_t i = 0; i < N; i++)
93 const T_partials_return y_dbl =
value_of(y_vec[i]);
94 const T_partials_return alpha_dbl =
value_of(alpha_vec[i]);
95 y_div_sigma_pow_alpha[i] =
pow(y_dbl * inv_sigma[i], alpha_dbl);
99 for (
size_t n = 0; n < N; n++) {
100 const T_partials_return alpha_dbl =
value_of(alpha_vec[n]);
102 logp += log_alpha[n];
104 logp += (alpha_dbl - 1.0) * log_y[n];
106 logp -= alpha_dbl * log_sigma[n];
108 logp -= y_div_sigma_pow_alpha[n];
111 const T_partials_return inv_y = 1.0 /
value_of(y_vec[n]);
112 ops_partials.
edge1_.partials_[n]
113 += (alpha_dbl - 1.0) * inv_y
114 - alpha_dbl * y_div_sigma_pow_alpha[n] * inv_y;
117 ops_partials.
edge2_.partials_[n]
119 + (1.0 - y_div_sigma_pow_alpha[n]) * (log_y[n] - log_sigma[n]);
121 ops_partials.
edge3_.partials_[n]
122 += alpha_dbl * inv_sigma[n] * (y_div_sigma_pow_alpha[n] - 1.0);
124 return ops_partials.
build(logp);
127 template <
typename T_y,
typename T_shape,
typename T_scale>
129 const T_y& y,
const T_shape& alpha,
const T_scale& sigma) {
130 return weibull_lpdf<false>(y, alpha, sigma);
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
boost::math::tools::promote_args< double, typename partials_type< typename scalar_type< T >::type >::type, typename partials_return_type< T_pack... >::type >::type type
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
fvar< T > log(const fvar< T > &x)
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
This template builds partial derivatives with respect to a set of operands.
size_t length(const std::vector< T > &x)
Returns the length of the provided std::vector.
bool size_zero(T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
size_t max_size(const T1 &x1, const T2 &x2)
T_return_type build(double value)
Build the node to be stored on the autodiff graph.
VectorBuilder allocates type T1 values to be used as intermediate values.
internal::ops_partials_edge< double, Op2 > edge2_
fvar< T > pow(const fvar< T > &x1, const fvar< T > &x2)
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
return_type< T_y, T_shape, T_scale >::type weibull_lpdf(const T_y &y, const T_shape &alpha, const T_scale &sigma)
Returns the Weibull log probability density for the given location and scale.
internal::ops_partials_edge< double, Op3 > edge3_
internal::ops_partials_edge< double, Op1 > edge1_