Stan Math Library  2.20.0
reverse mode automatic differentiation
bessel_first_kind.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_REV_SCAL_FUN_BESSEL_FIRST_KIND_HPP
2 #define STAN_MATH_REV_SCAL_FUN_BESSEL_FIRST_KIND_HPP
3 
4 #include <stan/math/rev/meta.hpp>
5 #include <stan/math/rev/core.hpp>
7 
8 namespace stan {
9 namespace math {
10 
11 namespace internal {
12 
14  public:
16  : op_dv_vari(bessel_first_kind(a, bvi->val_), a, bvi) {}
17  void chain() {
18  bvi_->adj_ += adj_
20  - bessel_first_kind(ad_ + 1, bvi_->val_));
21  }
22 };
23 } // namespace internal
24 
25 inline var bessel_first_kind(int v, const var& a) {
27 }
28 
29 } // namespace math
30 } // namespace stan
31 #endif
fvar< T > bessel_first_kind(int v, const fvar< T > &z)
The variable implementation base class.
Definition: vari.hpp:30
Independent (input) and dependent (output) variables for gradients.
Definition: var.hpp:33
friend class var
Definition: vari.hpp:32
const double val_
The value of this variable.
Definition: vari.hpp:38
vari * vi_
Pointer to the implementation of this variable.
Definition: var.hpp:45
void chain()
Apply the chain rule to this variable based on the variables on which it depends. ...
double adj_
The adjoint of this variable, which is the partial derivative of this variable with respect to the ro...
Definition: vari.hpp:44

     [ Stan Home Page ] © 2011–2018, Stan Development Team.