Stan Math Library  2.20.0
reverse mode automatic differentiation
erfc.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_REV_SCAL_FUN_ERFC_HPP
2 #define STAN_MATH_REV_SCAL_FUN_ERFC_HPP
3 
4 #include <stan/math/rev/meta.hpp>
7 #include <stan/math/rev/core.hpp>
8 #include <cmath>
9 
10 namespace stan {
11 namespace math {
12 
13 namespace internal {
14 class erfc_vari : public op_v_vari {
15  public:
16  explicit erfc_vari(vari* avi) : op_v_vari(erfc(avi->val_), avi) {}
17  void chain() {
18  avi_->adj_
20  }
21 };
22 } // namespace internal
23 
59 inline var erfc(const var& a) { return var(new internal::erfc_vari(a.vi_)); }
60 
61 } // namespace math
62 } // namespace stan
63 #endif
The variable implementation base class.
Definition: vari.hpp:30
Independent (input) and dependent (output) variables for gradients.
Definition: var.hpp:33
friend class var
Definition: vari.hpp:32
const double val_
The value of this variable.
Definition: vari.hpp:38
void chain()
Apply the chain rule to this variable based on the variables on which it depends. ...
Definition: erfc.hpp:17
fvar< T > exp(const fvar< T > &x)
Definition: exp.hpp:11
vari * vi_
Pointer to the implementation of this variable.
Definition: var.hpp:45
const double NEG_TWO_OVER_SQRT_PI
Definition: constants.hpp:138
fvar< T > erfc(const fvar< T > &x)
Definition: erfc.hpp:15
double adj_
The adjoint of this variable, which is the partial derivative of this variable with respect to the ro...
Definition: vari.hpp:44

     [ Stan Home Page ] © 2011–2018, Stan Development Team.