![]() |
Stan Math Library
2.20.0
reverse mode automatic differentiation
|
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/mat/fun/Eigen.hpp>
#include <stan/math/prim/mat/fun/distance.hpp>
#include <stan/math/prim/mat/fun/divide_columns.hpp>
#include <stan/math/prim/scal/err/check_positive_finite.hpp>
#include <stan/math/prim/scal/fun/square.hpp>
#include <stan/math/prim/scal/fun/distance.hpp>
#include <cmath>
#include <vector>
Go to the source code of this file.
Namespaces | |
stan | |
stan::math | |
Matrices and templated mathematical functions. | |
Functions | |
template<typename T_x , typename T_s , typename T_l > | |
Eigen::Matrix< typename stan::return_type< T_x, T_s, T_l >::type, Eigen::Dynamic, Eigen::Dynamic > | stan::math::gp_exponential_cov (const std::vector< T_x > &x, const T_s &sigma, const T_l &length_scale) |
Returns a Matern exponential covariance Matrix. More... | |
template<typename T_x , typename T_s , typename T_l > | |
Eigen::Matrix< typename stan::return_type< T_x, T_s, T_l >::type, Eigen::Dynamic, Eigen::Dynamic > | stan::math::gp_exponential_cov (const std::vector< Eigen::Matrix< T_x, -1, 1 >> &x, const T_s &sigma, const std::vector< T_l > &length_scale) |
Returns a Matern exponential covariance matrix. More... | |
template<typename T_x1 , typename T_x2 , typename T_s , typename T_l > | |
Eigen::Matrix< typename stan::return_type< T_x1, T_x2, T_s, T_l >::type, Eigen::Dynamic, Eigen::Dynamic > | stan::math::gp_exponential_cov (const std::vector< T_x1 > &x1, const std::vector< T_x2 > &x2, const T_s &sigma, const T_l &length_scale) |
Returns a Matern exponential cross covariance matrix. More... | |
template<typename T_x1 , typename T_x2 , typename T_s , typename T_l > | |
Eigen::Matrix< typename return_type< T_x1, T_x2, T_s, T_l >::type, Eigen::Dynamic, Eigen::Dynamic > | stan::math::gp_exponential_cov (const std::vector< Eigen::Matrix< T_x1, -1, 1 >> &x1, const std::vector< Eigen::Matrix< T_x2, -1, 1 >> &x2, const T_s &sigma, const std::vector< T_l > &length_scale) |
Returns a Matern exponential cross covariance matrix. More... | |