1 #ifndef STAN_MATH_FWD_MAT_FUN_QUAD_FORM_SYM_HPP 2 #define STAN_MATH_FWD_MAT_FUN_QUAD_FORM_SYM_HPP 11 template <
int RA,
int CA,
int RB,
int CB,
typename T>
13 const Eigen::Matrix<
fvar<T>, RA, CA>& A,
14 const Eigen::Matrix<double, RB, CB>& B) {
22 template <
int RA,
int CA,
int RB,
typename T>
24 const Eigen::Matrix<double, RB, 1>& B) {
30 template <
int RA,
int CA,
int RB,
int CB,
typename T>
32 const Eigen::Matrix<double, RA, CA>& A,
33 const Eigen::Matrix<
fvar<T>, RB, CB>& B) {
41 template <
int RA,
int CA,
int RB,
typename T>
43 const Eigen::Matrix<
fvar<T>, RB, 1>& B) {
void check_square(const char *function, const char *name, const matrix_cl &y)
Check if the matrix_cl is square.
Eigen::Matrix< fvar< T >, R1, C1 > multiply(const Eigen::Matrix< fvar< T >, R1, C1 > &m, const fvar< T > &c)
fvar< T > dot_product(const Eigen::Matrix< fvar< T >, R1, C1 > &v1, const Eigen::Matrix< fvar< T >, R2, C2 > &v2)
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
matrix_cl transpose(const matrix_cl &src)
Takes the transpose of the matrix on the OpenCL device.
Eigen::Matrix< fvar< T >, CB, CB > quad_form_sym(const Eigen::Matrix< fvar< T >, RA, CA > &A, const Eigen::Matrix< double, RB, CB > &B)
void check_symmetric(const char *function, const char *name, const matrix_cl &y)
Check if the matrix_cl is symmetric.
This template class represents scalars used in forward-mode automatic differentiation, which consist of values and directional derivatives of the specified template type.