Stan Math Library  2.20.0
reverse mode automatic differentiation
neg_binomial_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_NEG_BINOMIAL_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_NEG_BINOMIAL_LOG_HPP
3 
6 
7 namespace stan {
8 namespace math {
9 
13 template <bool propto, typename T_n, typename T_shape, typename T_inv_scale>
15  const T_n& n, const T_shape& alpha, const T_inv_scale& beta) {
16  return neg_binomial_lpmf<propto, T_n, T_shape, T_inv_scale>(n, alpha, beta);
17 }
18 
22 template <typename T_n, typename T_shape, typename T_inv_scale>
24  const T_n& n, const T_shape& alpha, const T_inv_scale& beta) {
25  return neg_binomial_lpmf<T_n, T_shape, T_inv_scale>(n, alpha, beta);
26 }
27 
28 } // namespace math
29 } // namespace stan
30 #endif
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition: beta.hpp:51
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
Definition: return_type.hpp:36
return_type< T_shape, T_inv_scale >::type neg_binomial_log(const T_n &n, const T_shape &alpha, const T_inv_scale &beta)

     [ Stan Home Page ] © 2011–2018, Stan Development Team.