Stan Math Library  2.20.0
reverse mode automatic differentiation
double_exponential_lccdf.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_DOUBLE_EXPONENTIAL_LCCDF_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_DOUBLE_EXPONENTIAL_LCCDF_HPP
3 
12 #include <cmath>
13 
14 namespace stan {
15 namespace math {
16 
32 template <typename T_y, typename T_loc, typename T_scale>
34  const T_y& y, const T_loc& mu, const T_scale& sigma) {
35  static const char* function = "double_exponential_lccdf";
37  T_partials_return;
38 
39  T_partials_return ccdf_log(0.0);
40 
41  if (size_zero(y, mu, sigma))
42  return ccdf_log;
43 
44  check_not_nan(function, "Random variable", y);
45  check_finite(function, "Location parameter", mu);
46  check_positive_finite(function, "Scale parameter", sigma);
47  check_consistent_sizes(function, "Random variable", y, "Location parameter",
48  mu, "Scale Parameter", sigma);
49 
50  using std::exp;
51  using std::log;
52 
53  operands_and_partials<T_y, T_loc, T_scale> ops_partials(y, mu, sigma);
54 
55  scalar_seq_view<T_y> y_vec(y);
56  scalar_seq_view<T_loc> mu_vec(mu);
57  scalar_seq_view<T_scale> sigma_vec(sigma);
58  const double log_half = std::log(0.5);
59  size_t N = max_size(y, mu, sigma);
60 
61  for (size_t n = 0; n < N; n++) {
62  const T_partials_return y_dbl = value_of(y_vec[n]);
63  const T_partials_return mu_dbl = value_of(mu_vec[n]);
64  const T_partials_return sigma_dbl = value_of(sigma_vec[n]);
65  const T_partials_return scaled_diff = (y_dbl - mu_dbl) / sigma_dbl;
66  const T_partials_return inv_sigma = 1.0 / sigma_dbl;
67  if (y_dbl < mu_dbl) {
68  ccdf_log += log1m(0.5 * exp(scaled_diff));
69 
70  const T_partials_return rep_deriv = 1.0 / (2.0 * exp(-scaled_diff) - 1.0);
72  ops_partials.edge1_.partials_[n] -= rep_deriv * inv_sigma;
74  ops_partials.edge2_.partials_[n] += rep_deriv * inv_sigma;
76  ops_partials.edge3_.partials_[n] += rep_deriv * scaled_diff * inv_sigma;
77  } else {
78  ccdf_log += log_half - scaled_diff;
79 
81  ops_partials.edge1_.partials_[n] -= inv_sigma;
83  ops_partials.edge2_.partials_[n] += inv_sigma;
85  ops_partials.edge3_.partials_[n] += scaled_diff * inv_sigma;
86  }
87  }
88  return ops_partials.build(ccdf_log);
89 }
90 
91 } // namespace math
92 } // namespace stan
93 #endif
void check_finite(const char *function, const char *name, const T_y &y)
Check if y is finite.
boost::math::tools::promote_args< double, typename partials_type< typename scalar_type< T >::type >::type, typename partials_return_type< T_pack... >::type >::type type
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:17
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...
Definition: conjunction.hpp:14
fvar< T > log(const fvar< T > &x)
Definition: log.hpp:12
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
This template builds partial derivatives with respect to a set of operands.
bool size_zero(T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition: size_zero.hpp:18
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
boost::math::tools::promote_args< double, typename scalar_type< T >::type, typename return_type< Types_pack... >::type >::type type
Definition: return_type.hpp:36
fvar< T > exp(const fvar< T > &x)
Definition: exp.hpp:11
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
T_return_type build(double value)
Build the node to be stored on the autodiff graph.
internal::ops_partials_edge< double, Op2 > edge2_
void check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Check if the dimension of x1 is consistent with x2.
return_type< T_y, T_loc, T_scale >::type double_exponential_lccdf(const T_y &y, const T_loc &mu, const T_scale &sigma)
Returns the double exponential log complementary cumulative density function.
fvar< T > log1m(const fvar< T > &x)
Definition: log1m.hpp:12
internal::ops_partials_edge< double, Op3 > edge3_
internal::ops_partials_edge< double, Op1 > edge1_

     [ Stan Home Page ] © 2011–2018, Stan Development Team.